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Note 1: The following report has been submitted to Guidance, Navigation, and Control

Conference 1994.

Note 2: The current project has been extended. Therefore, a semi-annual status report

is submitted.

NONLINEAR CONTROL OF SPACE MANIPULATORS wrlT-I MODEL UNCERTAINTY

Nonlinear control using feedback linearization or inverse dynamics for robotic manipulators yields good results

in the absence of modeling uncertainty. However, modeling uncertainties due to unknown joint friction coefficients

and payload variations can give rise to undesirable characteristics when these control systems are implemented. In

this work, it is shown how passivity concepts can be used to supplement the feedback linearization control design

technique, in order to make it robust with respect to the uncertain effects mentioned above. Results are obtained for

space manipulators with freely floating base; however, they are applicable to fixed base manipulators as well. The

controller guarantees asymptotic tracking of the joint variables. Closed-loop simulation results are illustrated for

planar space manipulators for cases where uncertainty exists in friction modeling and payload inertial parameters.

The dynamics of space manipulators differs from that of fixed base manipulators since their base is free to

move. The base could be either a spacecraft or a satellite. The movement of manipulator arms produces reaction

forces and torques on the base. Therefore the resulting motion of the base has to be accounted for in the dynamic

model for the manipulator. However, Papadopoulos and Dubowsky! showed that a dynamic model for space
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manipulatorswithafreebase is similar in structure to the dynamic model for fixed base manipulators. An obvious

similarity is that the inertia matrix in each case is symmetric and positive def'mite. In fact, the dynamic model for

fLXedbase manipulators can be viewed as forming a subset of that for space manipulators.

Some concepts have been proposed for joint trajectory control and inertial end tip motion control of space

manipulators. Vafa and Dubowsky 2 developed an analytical tool for space manipulators, known as the virtual

manipulator concept. The virtual manipulator is an idealized kinematic chain connecting its base, the virtual base, to

any point on the real manipulator. This point can be chosen to be the manipulator's end effector, while the virtual

base is located at the system center of mass, which is fixed in inertial space. As the real manipulator moves, the end

of the virtual manipulator remains coincident with the selected point on the real manipulator. Additionally, it can be

shown that the change in wientation in the virtual manipulator's joints is equal to the change in the orientation of the

real manipulator's joints. While these features give the designer the ability to represent a free floating space

manipulator by a simpler system whose base is fixed in inertial space, the associated transformation depends on

knowing the system parameters exactly. Alexander and Cannon 3 showed that the end tip of the space robot can be

controlled by solving the inverse dynamics that includes motion of the base. Their method assumes the mass of the

spacecraft to be relatively large compared to that of the manipulator it carries, and also requires much computational

effort to determine the control input. Note that some future space systems are expected to have the manipulator and

spacecraft masses of the same order. Umetani and Yoshida 4 proposed the generalized Jacobian matrix that relates

the end tip velocities to the joint velocities by taking into account the motion of the base. However, robustness of

the control scheme with respect to modeling uncertainties is not discussed. Masutani et. al. 5 proposed a sensory

feedback control scheme based on an artificial potential defined in the sensor coordinate frame. This scheme is

based on proportional feedback of errors in the end tip position and orientation as well as feedback of joint angular

velocities. A robust controller based on feedback linearization using a simplified nonlinear model and passivity

concepts was developed by Chuang, Mittal, and Juang 6.

In this report a robust control scheme using feedback linearization of the complete model and passivity concepts

is proposed for space manipulators in which joint friction and mass variations are considered. The proposed

technique can be used for luted base manipulators also. The control scheme uses inverse dynamics; however, it is

robust in the face of bounded modeling uncertainties which might arise due to improper or absent friction modeling

as well as payload variations. The controller asymptotically tracks prescribed time varying joint angle trajectories

whose acceleration is bounded in the L 2 space. Although only two types of uncertain dynamic effects are

considered here, the controller can be applied to systems with other types of uncertainty.
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2.Dynamics of Space Manipulator System with Uncontrolled Base

This development of a nonlinear dynamical model for space manipulator systems whose base is uncontrolled is

discussed in this Section. The development of the expressions for linear and angular momenta of the system closely

follows that given in Reference [5], however, the form of the final equations of motion is different. A space

manipulator system in the satellite orbit can be approximately considered to be floating in a non-gravitational

environment. As shown in Figure 1, the manipulator and the base can be treated as a set of n+l rigid bodies

connected through n joints. The bodies are numbered from zero to n with the base being 0 and the end tip being n.

Each joint is then numbered accordingly from one to n. The angular displacements of the joints can be represented

by a joint vector,

q = [ql q2""qn] T (1)

The mass and inertia tensor of the ith body are denoted by mi and Ii; and the inertia tensor is expressed in terms of

the base frame coordinates.

2.1 Kinematics

A coordinate frame fixed to the orbit of the satellite can be considered to be an inertial frame, denoted by EI. In

addition to El, another coordinate frame EB is defined that is attached to the base with its origin located at the base

center of mass. The attitude of the base itself is given by roll, pitch, and yaw angles. In the sequel, all vectors are

expressed in the base fixed coordinate axes.

Let Ri and ri be the position vectors of the center of mass of the ith rink with respect to frames ZI and ZB,

respectively. Then

Ri = RB + r_ (2)

where RB is the position vector from the base center of mass to the origin of the frame ZI. Let Vi and f_i be the

linear and angular velocities of the center of mass of the ith link with respect to frame EI and vi and o_ibe the linear

and angular velocities of the same point with respect to frame EB. Then Vi and f_i can be written as

Vi = VB + vi + fiB x ri (3)

fli = fiB + toi (4)
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VB and f2 B are the linear and angular velocities of the base center of mass with respect to frame YI. Note that for

any space manipulator, vi and _ for each link can be represented by the following forms

vi = Ju (q)q (5)

(0i = J Ai (q)q (6)

where JLi(q) and JAi(q) _ R 3xn are the Jacobian matrices for the ith link.

The position of the system center of mass with respect to the base frame depends on the joint angles. Given

below are two measures related to the system center of mass.

mo = _m i (7)
i=0

n

Zmiri(q)

re(q)= i=o
m e

(8)

2.2 Linear and Angular Momenta

The linear momentum P and the angular momentum L of the whole system are defined as follows

n

P= _miV i
i=0

(9)

!1

L = i=_o[Iif_i + miR i ×Vi]
(10)

Substituting Equations (2) through (8) into Equations (9) and (10) yields

P = HvV n + Hvnf_ B + HvqCl (11)

L = HTaVB + Ht-a_'lB+ H_q q + R B × P (12)

where

H v = mcI, Hv e R 3x3 (13)

H_ta =-m,[r, x], H,t a eR 3_3 (14)
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n E R 3×nHvq =_miJu, H_q
i=!

(15)

T

ri,_:_:1,+_:m,[r,×][r,×]..o_R_x_
i--O i=l

(:6)

H_ = i_l{IiJAi + mi[ri X]JLi}, Ht_ R3_"
(17)

Also, for any vector

I"lf= f2 ,

Lf_J

(18)

[f x] is defined as follows

0 -f3 f-i ]
[fx]= f3 0 1

-f2 ft

(19)

and I is an identity matrix of appropriate dimensions.

Since the working environment is non-gravitational and no actuators generating external forces are employed,

the linear and angular momenta of the whole system are conserved. Since the inertial frame is fixed to the orbit, the

whole system can be assumed to be stationary with respect to the inertial frame at the initial state. Thus the above

two momenta are always zero for the whole system. Note that it is implicitly implied that the satellite is a non-

spinning body. By using the fact then that the linear and angular momenta are zero, Equations (11) and (12) result in

v,=-.:'[.,on,+a,qq] (20)

_e = -[Ha T -I -1
(21)

2.3 Manipulator Dynamics

The total kinetic energy of the space robot can be written as

1 n r + fliTiif_i)
T = -_ i'__0(miVi Vi

(22)
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UsingEquations(3)through(8)and(13)through(17)thekineticenergycanbeexpressedas

n,jLqj
(23)

where Hq is the inertia matrix corresponding to the fixed base manipulator

n T Rrt×n
Hq = _[miJTJLi + JAiIi Jha ], Hq E

i=l

(24)

Equation (23) for the system kinetic energy can be simplified as follows. Substituting for VB from Equation (20)

leads to

where

T -I M e R3x3M = H a - H_H, H,a,

T -I R3XnZ = Ht,_q- HvaH,,Hvq, Z e

(26)

(27)

T -I Rnxn
W = Hq - HvqH v H_, W •

(28)

Further, substituting for _B from Equation (21), one obtains an expression for the system kinetic energy solely in

terms of the joint variables

T = 2_ITD(q)_I, DeR *_" (29)

where D is the inertia matrix of the system and is given by

D = W- ZTM-IZ (30)
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It can be shown that D = DT > 0. It is interesting to note that the system inertia matrix obtained in Reference [1] is

of the same form as the above. However, the expressions for W, M, and Z malrices are different. This is because a

different approach, viz. the concept of barycenters, is used in the model derivation of Reference [1].

Since there is no potential energy in non-gravitational environment, the Lagrangian A, is equal to the kinetic

energy

A=T (31)

So the system dynamics is given by

where x is an nxl vector of joint torques. The equations of motion for space manipulators can then be written as

D(q)_ + h(q,_l) = x (33)

where

h(q,q) = C(q,4)q + xf (34)

Paralleling the development for fixed base robots given by Spong and Vidyasagar 7, the elements of the matrix C are

obtained as

(35)

and xf represents the joint torque vector due to friction. As pointed out by Craig 8, the total friction at each joint can

be taken to be the sum of Coulomb friction and viscous friction. Coulomb friction is constant except for a sign

dependence on the joint velocity. Viscous friction, in general, depends on various powers of joint velocity.

However, higher powers contribute significantly only at high joint velocities. Manipulators usually do not attain

such high velocities. Therefore, it is sufficient to consider only the linear dependence of viscous friction on joint

velocity. Figure 2 shows a friction model consisting of Coulomb friction and linear viscous friction. Using this

model, the joint friction torque vector can be represented as
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zr = Wsgn(q) + rq (36)

where _P is a diagonal matrix consisting of Coulomb friction constants for the joints, and F is a diagonal matrix

consisting of viscous friction coefficients for the manipulator joints. It turns out that in many manipulator joints,

friction also displays a dependence on joint position. However, such effects are not considered here. There are

other effects like bending effects that are difficult to model and also neglected in the present model.

2.4

The translational velocity of the base center of mass can be written in terms of joint velocities by using the

expression for f_B from Equation (21) in Equation (20).

(37)

Also, the base angular velocity from Equation (21) is

D B = -M-17_21 (38)

Using the above expressions, the evolution of the base position and orientation with time can be determined as

follows

c,sos,- s,c,_'b =/SwCo SvSoS¢+c¥c¢
_-b I.-So Cos¢

CySeC¢ + sys¢l

svsoc , - c,s,|V s
CoC¢ J

(39)

I'llo 0,6 = 0 c¢

o s, see(0)

c, tan(O)1

-s¢ /_B

c¢ sec(0)J

(40)

where c(.) -- cos(-), s(.) -sin(.).

3. Control System Design

Assuming that the dynamics of the space manipulator is described by Equation (33), where D and h are

completely known, the feedback linearization or inverse dynamics 7 technique can be used to design controllers for
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tracking prescribed command trajectories for the joint angles. This can be accomplished as outlined in the following

sub-section.

3.1 Feedback Linearization

Let the joint torque vector be of the following form.

x=Du+h (41)

where u is the pseudo-control, i.e., it is the control input to the resulting linearized system. With the control law

given by Equation (41), the closed-loop system becomes

_1 q

where

A=[_ I01,B =I_ 1 (43)

A simple PD (Proportional-Derivative) type of control law is chosen for the feedback linearized system

u =cid + K2(cld -_1)+ Ki(qd -q)
(44)

where K1 and K2 are proportional and derivative gain matrices, respectively. These matrices are usually chosen to

be diagonal in order to achieve decoupled response among the joint angles. Substituting for u from Equation (44)

into Equation (42), one obtains

= Ace
(45)

[where e= e_ e ,et=qd -q, e2 =qd--el, Ac = A-BK, and K=[KI K2]. IfK 1 > 0 and K2 > 0, the error

dynamics as given by Equation (45)isasymptoticallystable.The freedom in selectingthe gain matricescan be

utilizedtomeet performancespecificationsfortheclosed-loopsystem.

The preceding discussion assumes availability of perfect knowledge about the nonlinear system dynamics.

However, in practice, D and h are usually imprecisely known due to modeling inaccuracies. It is assumed that the

eonlroller is designed using best estimates for friction models and for a nominal value of the end-tip payload. The

Page 10



actual joint friction will be different from that assumed in controller design, and the actual tasks might require

handling a variety of payloads. Thus the controller uses computed versions of D and h. The objective here is to

design a control law that is robust for bounded variations in D and h due to the uncertain dynamic effects in friction

and payload. This issue of robust control design is discussed in the following sub-section, where it will be seen that

the control law results in closed-loop asymptotic tracking.

3.2 Robust Feedback Linearization Using Passivity

In the presence of modeling uncertainties, the control law is given as

x = Dcu + hc (46)

where D c and he are computed versions of D and h respectively. Substituting for "_and u from Equations (46) and

(44) into Equation (33) it can be shown that the closed-loop system dynamics is given by

6 = Ace + Bv (47)

where

v = Au + 8 (48)

and

A = [I-D-1Dc], 8 = D-l[h- he] (49)

The fast step in the proposed design is to choose the gain matrix K = [K l K2] and an output matrix F such that

the linear system given by

= Ace + Bv

y=Fe

(5O)

is SPR (Strictly Positive Real). This can be achieved as outlined in the following theorem. A definition of the

concept of Strictly Positive Realness can be found in Slotine and Li9.

Theorem 1 [10]. LetK1 and K2 be such that

Page 11



Kt = diag[kli]; kli > 0, i = 1..... n

K2 = diagIk2i]; k2i >0, i= 1..... n

(k2i) 2 > kli , i = 1..... n

(51)

then if F = K, the system described by Equation (50) is SPR.

Note that the conditions of the Theorem as prescribed by (51) are extremely easy to satisfy.

With the linear System (50) being SPR, the Passivity Theorem 11 can be used to design asymptotically stable
(r ,_1/2

controllers as shownin the foUowing theorem. The notation |X[r =/_xTxdt _ is usedin the sequel.

Theorem 2. Let the desired trajectory for joint variables be such that cia e L2. Further, in the control law given by

Equation (46), let hc be such that

cnun vr>0 (c>0,**>d>0) (52)

If Dc is chosen such that

D-lDc>arI (a>0, r>0)
(53)

where

c + 1 (54)
a_>_

r

then the closed-loop System (47) is asymptotically stable.

Proof. The closed-loop system as given by Equation (47) can be represented in block diagram form as shown in

Figure 3. It is first shown that the nonlinear block in the feedback path igpassive 11. Consider

I = J-u'rvdt (T > 0)

= J-uT (Au + 5)dt
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:I (55)

Let the first and second integrals on the right hand side be denoted by I1 and 12 respectively. Then

i1 = _uT[D-1Dc _ i]udt (56)
0

Noting that Inequality (53) gives rise to D-ID, - I > (ar- 1)I, Equation (56) can be used to obtain the following.

I_>_(_-1)llult_. (57)

On the other hand,

T

-I2= IuTD-I[h- hc]dt
o

< _U_T_D-I[h - he ]_r (Hflder' s Inequality)

<,UlIT[CnUUT+d] Oneq_ty(52)) (58)

Hence

I>_(at-c-a)_ull_-dUUUT= f([u[T)
(59)

It can be shown that if (ar- c - 1) > 0, then

d 2

f(U4r)>- 4(__c- 1)v lug>o (6o)

which in turn would imply

-uVvdt >- d2 VT > 0 (61)
- 4(ar- c- 1)

0

Thus a sufficient condition for the nonlinear block to be passive is that a > (c + 1)/r.

Additionally, the transfer function of the feedforward block [Ac, B, K] is proper and has no poles on the

imaginary axis. Hence it has finite gain 12. Since qd • L2, then using the Passivity Theorem 11, one can conclude
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thatthesignalsu,Ke,andvarebounded.Moreover,sincethefeedforward block is SPR, Ke(0 = Klel(0 + K2e2(t)

goes to zero asymptotically. This in turn implies that el(t) and e2(0 individually approach zero asymptotically 8.

Remark. The conventional method of designing robust controllers for robotics problems involves introducing an

outer loop control 7 in order to compensate for the uncertain dynamic effects. This has been known to introduce

chattering in the control. When the design method is modified to make the control smooth, closed-loop asymptotic

tracking is generally compromised to some extent. In the method proposed in Theorem 2, an outer loop control is

not employed. Instead, achievement of robustness can be qualitatively understood as follows. Depending on the

amount of uncertainty contained in h, the computed version of the inertia matrix D, is modified such that conditions

(53) and (54) of the Theorem are satisfied.

The results of the Theorem are applicable to space manipulators as well as fixed base manipulators. Finally, it

should be noted that the control design obtained using the results of the theorem is not unique. Additionally, there is

a considerable amount of margin for performance optimization.

4.

As an example, results of applying Theorems 1 and 2 in order to achieve a robust control design will be

illustrated for planar space robots. Nonlinear dynamic models for the robots are obtained using the results of Section

2. The controller is designed for nominal values of joint friction coefficients and payload mass; whereas the actual

robot will be considered to have variations in these. Simulation is carried out using variable-step fourth and fifth-

order Runge-Kutta methods. The base and link masses in the following examples are assumed to be of the same

order of magnitude. Closed-loop results are generated for step command to the joint angles. Note that in general,

for end tip motion control in the inertial space, the inverse kinematics problem needs to be solved in order to

generate a command trajectory for the joint angle vector.

4.1 Planar One Link Space Manipulator

Figure 4 shows a planar one link space robot. Equation (33) describes the dynamics of this one degree of

freedom system. The system inertia, computed using Equation (30), turns out to be

D(ql) = W1,1 - Z23,1 / M3.3
(66)

where

Wl.1 = m01P12+ i1 (67)
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Z3.1= molPl (pocl + Pl) + It

M3,3 -- mol(P2o+P_ + 2poPlCl)+ Io + Il

(_)

(69)

Using Equations (34) and (350, h is determined to be

m°lp°plst [molPo (Po + PlCl) + Io ]" [molp* (poCl + Pt) + I1]412+ vsgn(ch )+ _1
h(ql,_h) = M32,_

(70)

where W and %,are respectively the coefficients of Coulomb and viscous friction. In Equations (67) through (70)

m01 = m0m i / me . mc = m0 + ml, ci = cos(q1), and % - sin(q1). The quantities m1, I1, and Pl are defined for an

"'equivalent"linkthat is obtained by removal of the end tip payload and absorbing its inertial characteristics in those

of the link itself. The concept of the equivalent link is explained in the Appendix.

It can be seen easily that as me -->o. and Io --¢-0,

D --->mlp _ + I,, h --_vsgn(ch )+ Y/h (71)

which represents the case of a fixed base manipulator. Equation (39) is used to determine the evolution of the base

position with time

'b = _m----LIPlSvl- M_3 (PoSy+PlSvl)]Cll
IIIc I.

(72)

= rill -- **3,3

where svl ---sin(v + ql), cv, = cos(_/+ qt). Finally, the base attitude dynamics is obtained using Equation (40)

=- Z3'1 Ch (73)
M3.3

Next, a feedback controller is designed for the one link space manipulator using the results of Theorems 1 and

2. Dc and hc are obtained from Equations (66) and (70) respectively, by using the nominal values of end-link

parameters and friction coefficients:
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D c ---D[ms_m_,ih..+p_,ll_i _

he= hlm'-,m_._-_ ,Is-.-*I_.V_¥_._f_Yc

(74)

Closed-loop results are generated for a step command of 1 radian to the joint angle. Table I lists physical parameters

of the example robot used in simulation. The feedback gains are chosen to be kl = 0.4 and k2 = 1.0. This choice of

gains satisfies Conditions (51) and in case of no modeling uncertainty, yields a closed-loop response without any

overshoot. Simulation results will be shown for the case in which there is no modeling uncertainty, and for another

casethatinvolves uncertainty.

Figures 5 through 8 show closed-loop responses for the nominal case. Figure 5 shows that asymptotic tracking

in the joint angle is achieved. Figures 7 and 8 show that the base moves in reaction to link motion; this is due to the

conservation of linear and angular momenta as discussed in Section 2. However, the joint angle still achieves the

appropriate commanded value. The closed-loop responses for the case involving uncertainty will be overlaid on

Figures 5 through 8.

5._

A robust control method based on feedback linearization and passivity concepts is proposed for space

manipulators. The method is applicable to fLXedbase manipulators as well. The control law results in asymptotic

joint angle tracking in the face of bounded uncertainties in friction modeling and payload inertial characteristics.

For the first time, closed-loop simulation results will be presented using this control method.
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v !

11 mm I a

11

Actual Link

m I I 1

Pl

I

Equivalent Link

The geometric and mass properties of the equivalent link are given as follows:

m I = ml + me

m'lp'l + m.l,
Pl = '

m I + m,

11=I;+ m]m, (11_p_)2
m 1+ m e

Page 18



Linki

BaseFrame

I; B

1

End Tip

Spacecraft
(Body 0)

Orbit

Inertial Frame

Z I

System
Center of
Mass

Figure 1. A Space RoboL
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Figure 3.
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Robust Feedback Linearization Using Passivity Theorem.
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Figure 4. A Single Link Planar Space Robot.
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Joint Angle Response for the Single Link Planar Space Robot.
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Motion of the Base Center of Mass for the Single Link Planar Space Robot.
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Table I. Physical Parameters of Single Link Robot.

Body p (meter) 1(meter) m (kg) I (kg.m 2)

0 (Base) 3.0 5.0 30.0

1 _ink) 3.0 6.0 1.0 3.0
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